首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   660篇
  免费   17篇
  国内免费   2篇
测绘学   26篇
大气科学   82篇
地球物理   159篇
地质学   193篇
海洋学   61篇
天文学   74篇
自然地理   84篇
  2020年   7篇
  2019年   5篇
  2018年   8篇
  2017年   10篇
  2016年   11篇
  2015年   15篇
  2014年   11篇
  2013年   46篇
  2012年   21篇
  2011年   28篇
  2010年   22篇
  2009年   36篇
  2008年   27篇
  2007年   23篇
  2006年   35篇
  2005年   17篇
  2004年   22篇
  2003年   18篇
  2002年   16篇
  2001年   9篇
  2000年   15篇
  1999年   9篇
  1998年   11篇
  1997年   8篇
  1996年   7篇
  1995年   7篇
  1994年   10篇
  1993年   11篇
  1992年   5篇
  1991年   8篇
  1990年   8篇
  1989年   9篇
  1988年   10篇
  1987年   13篇
  1986年   6篇
  1985年   9篇
  1984年   8篇
  1983年   14篇
  1982年   18篇
  1981年   22篇
  1980年   8篇
  1979年   9篇
  1978年   12篇
  1977年   5篇
  1975年   6篇
  1972年   7篇
  1971年   3篇
  1969年   3篇
  1968年   4篇
  1958年   3篇
排序方式: 共有679条查询结果,搜索用时 304 毫秒
21.
22.
The granite‐greenstone terranes of the Eastern Goldfields Province, Yilgarn Craton, Western Australia, are a major Australian and world gold and nickel source. The Kalgoorlie region, in particular, hosts several world‐class gold deposits. To attempt to understand why these deposits occur where they do, it is important to understand the crustal architecture in the region and how the major mineral systems operate in this architecture. One way to understand these relationships is to develop a detailed 3–D geological model for the region. The best method to map the 3–D geometry of major geological structures is by acquisition and interpretation of seismic‐reflection profiles. To contribute to this aim, a grid of deep seismic‐reflection traverses was acquired in 1999 to examine the 3–D geometry of the region in an area including the Kalgoorlie mineral region and mineral fields to the north and west. This grid was tied to the 1991 regional deep seismic traverse and 1997 high‐resolution seismic profiles in the same region. The grid covers an area measuring approximately 50 km wide by 50 km long and extended to a depth of approximately 50 km (below the base of the crust in this region). The resulting 3–D geological model was further constrained by both surface geological data and geophysical interpretations, with the seismic interpretations themselves also constrained by gravity and magnetic modelling. The 3–D model was used to investigate the geometric relationships between the major faults and shear zones in the area, the relationship between the granite‐greenstone succession and the basement, and the spatial relationships between the greenstones and the granites. Interpretation of the grid of seismic lines and construction of the 3–D geological model confirmed the existence of the detachment surface and led to the recognition that the granite‐greenstone contact usually occurs at a much shallower level than the detachment. Also, west‐dipping faults in the vicinity of the Golden Mile, including the Abattoir Shear through to Boulder‐Lefroy Fault, appear to be more important than previously thought in controlling the structure of that area. An antiformal thrust stack occurs beneath a triangle zone centred on the Golden Mile. The Black Flag Group was deposited in a probable extensional setting, and late extension was also probably more important than previously thought. The granite‐gneiss domes were uplifted by the formation of antiformal thrust stacks at depth beneath them.  相似文献   
23.
Increasing concentrations of atmospheric CO2 and other greenhouse gases are expected to contribute to a global warming. This paper examines the potential implications of a climatic change corresponding to a doubling of atmospheric concentrations of CO2 on crop production opportunities throughout Ontario, a major food producing region in Canada. The climate is projected to become warmer and drier, but the extent of these shifts are expected to vary from region to region within Ontario. The effect of this altered climate on crop yields and the area of land capable of supporting specific crops varies according to region, soil quality and crop type. Most notable are the enhanced opportunities for grains and oilseeds in the northern regions, and the diminished production prospects for most crops in the most southerly parts of Ontario.  相似文献   
24.
The bedrock freeze-thaw and moisture regimes at an actively eroding site on the Niagara Escarpment, Bruce Peninsula, southern Ontario, were monitored between December 1983 and April 1984, and the results compared with amounts of debris collected in an adjacent rock trap. Frost wedging in pre-existing rock fissures is the primary mechanism responsible for the observed rockfall events; hydration effects are negligible. Debris production was more closely related to the duration of the freezing leg of the freeze-thaw cycle than to intensity or to cycle frequency. Release also coincided with periods of high pore saturation (> 60 per cent) and the seepage of water from cracks and fissures. Fewer freeze-thaw cycles were recorded in the air than at 1 and 3.5 cm in the bedrock. The number of cycles that could be declared geomorphologically effective according to established temperature criteria was normally less than half the total number of freeze-thaw cycles recorded in both air and bedrock. Under the current temperature regime at the field site, few effective cycles are capable of penetrating more than 5 cm into the free face.  相似文献   
25.
Dimensions of drought: South African case studies   总被引:1,自引:0,他引:1  
The recent drought in southern Africa has underscored the need for detailed analysis of the phenomenon. While geographers have researched the causes and impacts of drought in many African contexts, South Africa and in particular its Bantustans have not received sufficient similar attention. This paper outlines firstly the dimensions of drought in South Africa, including the biophysical and socio-economic factors. Issues such as land-use management, drought planning and relief are interrogated in the South African context. The final section of the paper highlights these debates with specific reference to case studies of past and present drought initiatives in South Africa.  相似文献   
26.
Geophysical surveys and chemical analyses on cores were carried out in three Ontario peatlands, from which we have gained a better understanding of the peat properties that control the geophysical responses. The electrical conductivity depends linearly on the concentration of total dissolved solids in the peat pore waters and the pore waters in turn bear the ionic signatures of the underlying mineral sediments. The ionic concentration, and thus the electrical conductivity, increase linearly from the surface to basement. The average bulk electrical conductivity of peatlands at Ellice Marsh, near Stratford, and at Wally Creek Area Forest Drainage Project, near Cochrane, are of the order of 25 mS/m. The Mer Bleue peatland, near Ottawa, has extremely high electrical conductivity, reaching levels of up to 380 mS/m near the base of the peat. The Mer Bleue peatland water has correspondingly high values of total dissolved solids, which originate from the underlying Champlain Sea glaciomarine clays. The dielectric permittivity in peats is largely controlled by the bulk water content. Ground penetrating radar can detect changes in water content greater than 3%, occurring within a depth interval less than 15 cm. The principal peatland interfaces detected are the near-surface aerobic to anaerobic transition and the peat to mineral basement contact. The potential for the successful detection of the basement contact using the radar can be predicted using the radar instrument specifications, estimates of the peatland depth, and either the bulk peat or the peat pore water electrical conductivities. Predicted depths of penetration of up to 10 m for Ellice Marsh and Wally Creek exceed the observed depths of 1 to 2 m. At Mer Bleue, on the other hand, we observe that, as predicted, a 100 MHz signal will penetrate to the base of a 2 m thick peat but a 200 MHz signal will not.  相似文献   
27.
The Australian Government policy on reduction of greenhouse gas emissions announced in 1990 includes exploring the scope for immediate, low cost reductions. Such measures can be taken as including ‘no regrets’ policies: those that, in addition to mitigating potential climate change, confer economic gains (including other environmental benefits) which exceed their costs. Some possible ‘no regrets’ opportunities and policies are identified relevant to energy use by the road transport sector over the period to 2020. The MARKALMENSA multi-period linear programming model of the Australian energy sector is used to investigate the cost-effectiveness of these policies.  相似文献   
28.
Seasat altimetry profiles across the Falkland-Agulhas fracture zone (FZ) and the Ascension FZ in the South Atlantic were examined for evidence of step-like geoid offsets predicted from thermal modeling of the lithosphere. The geoid profiles exhibit much short-wavelength power and the step-like offsets are often small, making reliable estimation of the heights of the observed geoid offsets difficult. The offsets were estimated by the least-squares fitting of quadratic curves incorporating a step function to the altimetry profiles. A preferred offset value was determined for each profile by taking the average of step heights computed with various distances around the fracture zone excluded from the fit. The age of the crust surrounding the fracture zones, necessary for computing a theoretical geoid offset, was determined from surface ship magnetic anomaly data and from existing ocean floor age maps.Observed variations in geoid step height with age of the lithosphere are not consistent with those predicted from standard thermal plate models. For ages less than 30 Ma, the step offsets across both fracture zones decrease in a manner appropriate for an unusually thin plate with a thickness of 50–75 km. At greater ages, the offsets show complex behavior that may be due to bathymetric features adjacent to the fracture zones. Similar geoid patterns on opposite branches of the Falkland-Agulhas FZ are indicative of processes that act symmetrically on both sides of the Mid-Atlantic Ridge. This behavior of the geoid is consistent both with small-scale convection occurring beneath the lithosphere and with bathymetric features originally produced along the ridge crest and now located symmetrically on opposite sides of the ridge. The west flank of the Ascension FZ displays a regrowth in step height at about 40 Ma consistent with small-scale convection and in agreement with other studies of Pacific and South Atlantic fracture zones.  相似文献   
29.
Basalts dredged along the Mid-Atlantic Ridge axis between 10°N and 17°N have been studied for their trace element characteristics [1]. To give complementary information on mantle source history and magma genesis, these samples have been analysed for their SrNdPb isotopic compositions. There is a good correlation between the structure of the ridge axis which shows a topographic anomaly centered around 14°N and hygromagmaphile element ratios such as Rb/Sr, (Nb/Zr)N or Sm/Nd as well as isotopic ratios plotted as a function of latitude. The samples coming from the 14°N topographic high show new MORB SrNd isotopic characteristics which pictured in a classical mantle array diagram, put their representative points close to HIMU sources of ocean islands such as St. Helena, Tubuaïand Mangaia. The 14°N mantle source presents geochemical characteristics which indicate mantle differentiation processes and a mantle history that are more distinct than so far envisaged from typical MORB data. Pb data indicates that the 14°N mantle source cannot be the result of binary mixing between a depleted mantle and a HIMU-type source. Rather, the enriched endmember could itself be a mixture of Walvis-like and HIMU-like materials. The geochimical observations presented favour the model of an incipient ridge-centered plume, in agreement with [1].  相似文献   
30.
The easternmost stratovolcano along the Central American arc is El Valle volcano, Panama. Several andesitic and dacitic lava flows, which range in age 5–10 Ma, are termed the old group. After a long period of quiescence (approximately 3.4 Ma), volcanic activity resumed approximately 1.55 Ma with the emplacement of dacitic domes and the deposition of dacitic pyroclastic flows 0.9–0.2 Ma. These are referred to as the young group. All of the samples analyzed are calc-alkaline andesites and dacites. The mineralogy of the two groups is distinct; two pyroxenes occur in the old-group rocks but are commonly absent in the young group. In contrast, amphibole has been found only in the young-group samples. Several disequilibrium features have been observed in the minerals (e.g., oscillatory zoning within clinopyroxenes). These disequilibrium textures appear to be more prevalent among the old- as compared with the young-group samples and are most likely the result of magma-mixing, assimilation, and/or polybaric crystallization. Mass-balance fractionation models for major and trace elements were successful in relating samples from the old group but failed to show a relationship among the young-group rocks or between the old- and young-group volcanics. We believe that the old-group volcanics were derived through differentiation processes from basaltic magmas generated within the mantlewedge. The young group, however, does not appear to be related to more primitive magmas by differentiation. The young-group samples cannot be related by fractionation including realistic amounts of amphibole. Distinctive geochemical features of the young group, including La/Yb ratios〉15, Yb〈1, Sr/Y〉150, and Y〈6, suggest that these rocks were derived from the partial melting of the subducted lithosphere. These characteristics can be explained by the partial melting of a source with residual garnet and amphibole. Dacitic material with the geochemical characteristics of subducted-lithosphere melting is generated apparently only where relatively hot crust is subducted, based on recent work. The young dacite-genesis at El Valle volcano is related to the subduction of relatively hot lithosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号